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Iron-based superconductors with high critical temperature (Tc) 
feature multiple bands near the Fermi energy (EF), which makes 
understanding the details of unconventional pairing more dif-

ficult1–3. However, it also allows for a wealth of, possibly topologi-
cally non-trivial4–7, electronic states, of which a recent example is the 
topological insulator (TI) states discovered8 in the iron-based super-
conductor Fe(Te,Se), hinting at a promising direction to realize topo-
logical superconductivity and Majorana bound states9–13. In this work, 
we show that this initial finding is only one facet of the rich scope of 
combined topology and unconventional superconductivity: different 
types of topological states (both insulator and semimetal) coexist with 
unconventional high-Tc superconductivity, which is a generic feature 
of various iron-based superconductors. First, we predict and observe 
that TI bands reminiscent of Fe(Te,Se) exist in Li(Fe,Co)As as well, 
indicating that TI states appear in various iron-based superconduc-
tors. Second, and more interestingly, we predict and observe topo-
logical Dirac semimetal (TDS) bands in Li(Fe,Co)As and Fe(Te,Se), 
supported by high-resolution angle-resolved photoemission spec-
troscopy (ARPES), spin-resolved ARPES (SARPES) and magneto-
resistance measurements, proving the generic existence of different 
types of topological states in iron-based superconductors. Finally, the 
phase diagram of these superconducting topological states as a func-
tion of doping is discussed. The combination of topological states and 
high-Tc unconventional superconductivity may produce not only sur-
face topological superconductivity deriving from the TI edge states, 
but also bulk topological superconductivity from the TDS bands.

Normal insulator, TI and TDS constitute topologically distinct 
phases14–17. From a band structure point of view, if there is no band 
inversion in the entire Brillouin zone, the material will be a nor-
mal insulator, with no spin-polarized surface states, as shown in 
Fig. 1a. In a simple case, if there is a single band inversion in the 
entire Brillouin zone, the material will be topologically non-trivial, 
with spin-polarized Dirac-cone type bands. In a TI, the bulk band-
gap leads to well-defined surface states, with explicit spin helicity 
(Fig. 1b). Instead, in a TDS, the band crossing is protected by the 
crystal symmetry. There are still surface states, but these generally 
overlap with the bulk states on the (001) surface16–21, as indicated 
by the spin-polarized spectrum in Fig. 1c. The spin helicity of the 
surface states may not be fixed (Supplementary Information Part 6). 
The spin-polarization magnitudes of the (001) surface states gener-
ally show a gradual increase with increased distance from the Dirac 
point. The three phases may coexist in one material.

In Fe(Te,Se) the band inversion near EF occurs only along the kz 
direction between the pz and dxz/dyz bands, responsible for the non-
trivial topological invariance5,8. Here we further check the band 
structure of the four major classes of iron-based superconductors, 
focusing on the only possible band inversion of pz and dxz/dyz bands, 
which is directly related to the topology. The separations between 
the adjacent FeAs/FeSe layers Δ d are 8.741, 6.508, 6.364 and 5.955 Å 
for LaOFeAs (1111), BaFe2As2 (122), LiFeAs (111) and FeTe0.5Se0.5 
(11), respectively2,5. This separation directly determines the inter-
layer pp coupling, which will affect the bandwidth of the pz band 
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along Γ Z (ref.5). The parameter Δ d of LaOFeAs is much larger than 
that of BaFe2As2, LiFeAs and Fe(Te,Se), resulting in a small pz dis-
persion for LaOFeAs but large pz dispersions for BaFe2As2, LiFeAs 

and Fe(Te,Se). In Fig. 1d–g, we show the band structures of the four 
classes. It is clear that along the Γ Z direction there is no band inver-
sion for LaOFeAs, whereas there are band inversions for BaFe2As2, 

NI
a d

f g

e

b

c

–

+

TDS

–

+

TI

–

+
–2

–1

0

1

2

E
ne

rg
y 

(e
V

)

Γ M X Γ Z A R Z

LaOFeAs

Γ M X Γ Z A R Z

FeTe0.5Se0.5

–2

–1

0

1

2

E
ne

rg
y 

(e
V

)

Γ M X Γ Z A R Z

LiFeAs

Γ M X Γ Z A R Z

BaFe2As2

H

L

+

–

Fig. 1 | Different topological phases and band structures of iron-based superconductors. a–c, Out-of-plane dispersion and the corresponding (001) 
surface spectrum, for normal insulator (NI) (a), TI (b) and TDS (c). We overlapped the spin-polarized surface spectrum (blue and red) on top of the spin-
integrated surface spectrum (grey). H, high intensity; L, low intenstiy. d–g, Band structures of LaOFeAs, BaFe2As2, LiFeAs and FeTe0.5Se0.5, respectively. The 
size of the red circles represent the weights of the As/Se pz orbital. No band inversion between pz and dxz/dyz is found in LaOFeAs, whereas there are band 
inversions in BaFe2As2, LiFeAs and FeTe0.5Se0.5.
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Fig. 2 | electronic structure of Li(Fe,Co)as. a, Left: crystal structure of Li(Fe,Co)As. Right: high-symmetry points in the 3D Brillouin zone and (001) 
surface Brillouin zone. b, Zoomed-in view of the LiFeAs band dispersion along Γ M and Γ Z. Red indicates the dxz/dyz bands and blue indicates the pz band. 
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structure at Cut D, where the bulk Dirac cone of the TDS bands is shown. d, (001) surface spectrum of LiFeAs. There is a large broadening in the spectrum 
at the α and β band tops with reduced intensity, due to the kz dispersion. e, ARPES intensity plot of LiFe1−xCoxAs (x =  3%) at 15 K, with a laser delivering  
p-polarized 7-eV photons. The spectrum is divided by the corresponding Fermi function. f, ARPES intensity plot of LiFe1−xCoxAs (x =  9%) at 10 K, with  
p-polarized 7-eV photons. The two Dirac cones are similar to the ones in the calculation (d).
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LiFeAs and Fe(Te,Se). In two-dimensional (2D) thin films, such as 
Fe(Te,Se) monolayer films, there is no kz dispersion. However, the 
band inversion may still occur for the in-plane band structure. The 
in-plane lattice parameter a (or Se/Te height) affects the intralayer 
pd coupling and determines the position of the pz band at Γ . By 
reducing the parameter a (increasing the Se/Te height), the pz band 
will sink below the dxz/yz band at Γ , generating a band inversion and 
realizing a 2D topological insulator6,22,23.

Band structure measurements are required to verify the existence 
of the non-trivial topology. Since LiFeAs has no magnetic and struc-
tural transitions compared to BaFe2As2, we carried out a detailed 
study on the band structure of Li(Fe,Co)As (refs 24–27). Although 
there are reports on the pz band in LiFeAs and NaFeAs5,28, no evi-
dence of the topological bands is observed due to the low resolution. 
The high-resolution laser-based ARPES makes it possible to resolve 
the topological bands and confirm the topological nature. The crys-
tal structure of Li(Fe,Co)As is shown in Fig. 2a. The Li atoms are 
fairly close to the FeAs plane, resulting in a lattice parameter c com-
parable to that of Fe(Te,Se). Thus a large pz dispersion is also present 
in LiFeAs, as shown in the zoomed-in view of the band structure 
along kz in Fig. 2b. The spin–orbit coupling splits the dxz/dyz bands, 
forming two hybridized bands α and β, which both have mixed dxz/dyz 
orbitals along kz. When the pz band with odd parity (‘− ’) crosses the 
α band with even parity (‘+ ’), band inversion is formed. The spin–
orbit coupling produces an avoided crossing between the pz and 

α bands, resulting in TI states, similar to that of Fe(Te,Se) (ref. 8).  
We further notice that the β band also has an even parity (‘+ ’). The 
crossing between the pz and β bands is protected by the crystal C4 
rotation symmetry, and forms a three-dimensional (3D) Dirac cone. 
Consequently, the band inversion and the protected band cross-
ing produce TDS states. At the cut of the Dirac point (Cut D in  
Fig. 2b), the in-plane bulk Dirac cone of the TDS bands is evident 
in the band structure, as shown in Fig. 2c. Both TI and TDS states 
can be visualized at the same time in the (001) surface spectrum 
(Fig. 2d). Consistent with the two band inversions in Fig. 2b, the TI 
surface states form the lower Dirac cone, and the TDS surface states 
form the upper Dirac cone. The bulk states with large kz dispersion 
appear as broad and weak continuums and thus the bulk Dirac cone 
of the TDS states is not apparent in the surface spectrum.

By changing the Fermi level by means of different Co content, 
we observed both TI and TDS Dirac cones in Li(Fe,Co)As at the 
same time. The ARPES band structure of Li(Fe,Co)As with 3% Co is 
shown in Fig. 2e. Despite the Dirac cone from the TI bands, the sec-
ond Dirac cone from the TDS states, which is above EF, shows up in 
the ARPES spectrum divided by the corresponding Fermi function. 
We further checked the Li(Fe,Co)As sample with 9% Co (shown in 
Fig. 2f). As expected, the TDS cone shifts down and the full cone 
clearly shows up, directly confirming the existence of the TDS 
states. We notice that the parabolic band tops of the α and β bulk 
bands are missing or too broad to distinguish in Fig. 2e,f, showing 
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similar spectral features to the calculated surface spectrum, which 
indicates a strong kz broadening effect in the laser-ARPES data29. 
Due to the strong kz broadening effect, the pz bulk continuum will 
be very broad and thus the two sharp Dirac cones in Fig. 2e,f should 
come from surface states.

The surface Dirac cones of the TI and TDS states should both be 
spin-polarized, as shown in Fig. 1b,c. Thus we can use SARPES30 to 
check their surface nature. In Fig. 3 we show the data on three differ-
ent compositions of LiFe1−xCoxAs. The spin-integrated band struc-
tures are the same as the ones in Fig. 2, except for some intensity 
difference induced by the experimental geometries (Supplementary 
Information Part 1). A pair of spin-polarized energy distribution 
curves along ky was measured, with their positions illustrated in Fig. 
3b,f,j. We first focus on the spin polarization of the TI Dirac cone, 
which is obtained from both x =  3% and x =  9% samples, and shown 
in Fig. 3a–h. In both samples, the lower part of the cone (position A)  
shows the opposite spin polarization to the upper part (position B),  
and the left-hand part of the cone (Cut 1 and Cut 3) shows the 
opposite spin polarization to the right-hand part (Cut 2 and Cut 4), 
as expected for the spin polarization from a Dirac cone. The direc-
tion of the spin polarization indicates that the Dirac cone has a left-
hand helicity, the same as that of Fe(Te,Se) and most TIs (see also 

Supplementary Information Part 2). As we discussed in connection 
with Fig.1, the TDS surface Dirac cone is similar to that of TI, whose 
spin polarization can be obtained from both the x =  9% and x =  12% 
samples, as shown in Fig. 3e–l. Since the lower part of the TDS sur-
face cone shows a very weak intensity (Fig. 3e,i), we focus on the 
spin polarization of the upper part (position C). In the x =  9% sam-
ple (Fig. 3g,h), a weak spin polarization at position C is resolved. In 
the x =  12% sample (Fig. 3k,l), a pair of energy distribution curves 
more distant from the conical point is measured and a larger spin 
polarization is observed. These results are consistent with the model 
calculations in Fig. 1c: the magnitude of the spin polarization of the 
TDS surface cone is smaller near the conical point and larger far 
from the conical point. The experimental spin polarizations of the 
TI and TDS surface cones are summarized in Fig. 3b,f,j. The spin 
polarizations confirm that the two Dirac cones indeed come from 
the surface states.

Because of the similar band structure of Li(Fe,Co)As and 
Fe(Te,Se), the TDS states may also exist in Fe(Te,Se). The detailed 
band structure of Fe(Te,Se) from high-resolution ARPES is shown 
in Fig. 4a and Supplementary Information Part 4 and 5. The dxy 
orbital is below the dyz orbital at the Γ  point, and a hybridization gap 
opens at their crossing points, similar to the case of FeSe (refs 31,32),  
but slightly different from the density functional theory calcula-
tions. Thus, a k · p model based on the real band structure is built 
to describe the topological states more accurately (Supplementary 
Information Part 5). The TDS bands are clearly shown in the (001) 
surface spectrum in Fig. 4b. Since there is no mixing of the TDS 
states and other bulk states near Γ , evidence of the TDS states may 
appear in the transport measurements. It is well known that Dirac 
and Weyl semimetals, which host bulk Dirac bands, generically 
show a magnetoresistance that is linearly dependent on the mag-
netic field17,33,34, which can be explained by the quantum magneto-
resistance35. If there are TDS bands near EF in Fe(Te,Se), it is very 
likely that such a linear magnetoresistance should also be realized, 
the measurement of which we report in the following. The magne-
toresistance was measured at 16 K on two batches of samples (sam-
ples #1 and #2) with different growth methods (see Methods). Both 
samples show similar magnetoresistance curves in a static magnetic 
field, as shown in Fig. 4c. Indeed, the magnetoresistance curve above 
6 T shows a quantum linear behaviour, whereas the curve below 6 T 
exhibits a semiclassical quadratic dispersion. The linear fitting in 
the range 6–14 T matches well with the experimental curve. We also 
checked the magnetoresistance in pulsed high magnetic fields up to 
30 T on sample #1, and show the results in Fig. 4d. The magnetore-
sistance in pulsed fields in the range 0–14 T is the same as that mea-
sured in static fields. Above 14 T, the pulsed-field magnetoresistance 
exactly follows extrapolation of the linear fitting of the magnetore-
sistance in the static field. All these results clearly show the exis-
tence of linear magnetoresistance above 6 T in Fe(Te,Se). We note 
that there are reports of topologically trivial bulk Dirac bands near 
the M point in magnetic BaFe2As2(ref. 36) or nematic FeSe (ref. 37). In 
contrast, however, in Fe(Te,Se) there is no report of such orders, and 
no Dirac cone was observed38,39. Thus, this linear magnetoresistance 
most likely comes from the TDS bands.

We also obtain evidence of the TDS bands in Fe(Te,Se) by mea-
suring the associated surface states. Although they generally overlap 
with bulk states on the (001) surface, their spin-polarized character 
provides a unique signature to those surface states, detectable via 
spin-resolved photoemission measurements, as already shown in 
Fig. 3. The intensity plots of Fe(Te,Se) from SARPES are shown in 
Fig. 5a,b. The spin-integrated plot is the same as the one in Fig. 4a,  
showing clearly the hybridization of dxy and dyz obitals, whereas 
the spin-resolved intensity plot (the intensity difference between 
spin-up and spin-down photoelectrons) shows the spin polariza-
tion of the dyz band near EF. As shown in the inset of Fig. 5c, we 
measured four cuts, with all four spin-resolved energy distribution 
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curves (Fig. 5c–f) show clear spin polarizations (Fig. 5g,h), exhibit-
ing a helical texture. To further confirm that the spin polarizations 
are the intrinsic properties of the electronic states in the crystal and 
not induced by the photoemission process, we also checked the spin 
polarization with different photon energies in a synchrotron facil-
ity, as shown in Fig. 5i, and with different photon polarizations, as 
shown in Supplementary Information Part 8. All the results con-
sistently show a spin-helical texture, excluding the possibility that 
the spin polarizations come from the photoelectron process or spin 
matrix-element effect. The magnitude of spin polarization of the dyz 
band is about 50%, indicating coexistence of unpolarized bulk and 
polarized surface states. The results are consistent with the spin-
resolved spectrum from calculations, as shown in Fig. 5j.

The coexistence of TI and TDS bands near the Fermi level in 
iron-based superconductors provides the basis for a rich variety of 
possible topologically superconducting states. Based on the band 
structure of Fe(Te,Se), the right-hand side of Fig. 6a illustrates the 
possible superconducting states as one were to shift EF to the TI or 
TDS Fermi level region via charge carrier doping. In both the TI 
and TDS regions, spin-helical Fermi surfaces are expected for the 
surface states. For the TDS, the spin-helical Fermi surfaces (Fermi 
arc pairs) appear on some side surfaces16,40, with two spherical bulk 
Fermi surfaces along the Γ Z line, as shown in Fig. 6b. Invoking the 
notion that spin-helical surface states in proximity to a bulk s-wave 
superconductor feature topologically superconducting states with 
Majorana bound states in its associated vortex cores9, the surface 
states in the TI region are expected to exhibit topological supercon-
ductivity, which is already observed by ARPES and scanning tunnel-
ling microscopy measurements8,41. Similarly, if bulk s-wave pairing 
persists in the TDS region, the spin-helical Fermi surfaces on side 
surfaces are likewise expected to form topologically superconduct-
ing states (Fig. 6b). However, since d orbitals dominate the Fermi 
level density of states in iron-based superconductors and exhibit 

strong correlation effects such as Hund’s coupling, the inter-orbital 
pairing may dominate in the TDS Fermi level region, which would 
generate a spin triplet pairing state on the two spherical bulk Fermi 
surfaces with point nodes on the kz axis (Fig. 6c), as a consequence 
of orbit–momentum locking in the bulk Dirac cone42,43. Such a sce-
nario would hence yield yet another intriguing pairing state, namely 
a bulk topological superconductor42–44, which would host Majorana 
fermions on its side surfaces. Since few reports on the observation 
of intrinsic superconductivity within TDSs are available, except 
certain evidence of superconductivity in Cd3As2 induced by a point 
contact or external pressure45–47, the TDS states in iron-based high-
Tc superconductors provide a unique platform for studies on such 
bulk topological superconductivity.

A shift of the Fermi level could also induce a topological phase 
transition from topological superconductor to trivial superconduc-
tor7, which might be useful to optimize the conditions for surface 
topological superconductivity and Majorana bound states. It is, 
however, difficult to study such proposals in the scope of Fe(Te,Se), 
as it appears tedious to change the electron doping of Fe(Te,Se) 
without noticeably affecting the coherence of the electronic states. 
Fortunately, the Fermi level of Li(Fe,Co)As is easily tuned by the 
Co content, and the TI/TDS bands may be separately accessed, ren-
dering Li(Fe,Co)As ideal for such studies. One important aspect to 
address is the overlapping character between the trivial bulk states 
and the topological bands, which might interfere with the topologi-
cal pairing, or might stabilize topological superconductivity over a 
greater range of doping48,49. We defer a more detailed discussion of 
these issues to future work.

Our findings of the TI and TDS states in Li(Fe,Co)As and 
Fe(Te,Se) prove the generic existence of different types of topologi-
cal states in iron-based superconductors. Their simple structures, 
multiple topological states, and a tunable Fermi level make iron-
based superconductors ideal platforms for the study of topological 
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superconductivity, Majorana bound states, and as such, potentially, 
topological quantum computation.
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Methods
High-quality single crystals of LiFe1−xCoxAs were synthesized by the self-flux 
method. The Fe(Te,Se) single crystals of sample #1 were grown by the self-flux 
method. The composition is Fe1+yTe0.57Se0.43, with y =  14%, as detected by the 
inductively coupled plasma (ICP) atomic emission spectroscopy. The as-grown 
Fe(Te,Se) single crystals were annealed in a controlled amount of O2 to remove 
excess Fe51. The Fe(Te,Se) single crystals of sample #2 were grown by the Bridgman 
technique, with a composition of FeTe0.55Se0.45. The as-grown single crystals contain 
no or very small amounts of excess Fe. No annealing process was applied to 
sample #2 (ref. 52). Both Fe(Te,Se) samples show a Tc of ~14.5 K and the same band 
structure.

The high-resolution ARPES measurements on Li(Fe,Co)As were performed 
on a spectrometer with a VG-Scienta R4000WAL electron analyser. The energy 
resolution of the system was set to ~5 meV. The spin-resolved ARPES (SARPES) 
measurements on Li(Fe,Co)As were carried out with a ScientaOmicron DA30-L 
analyser, together with twin very-low-energy electron diffraction (VLEED) spin 
detectors30. The energy resolution for the spin-resolved mode was set to ~6 meV 
for the x =  3% and 9% samples, and ~12 meV for the x =  12% sample, with a 
momentum resolution of ~0.01 Å−1. All the ARPES measurements on Li(Fe,Co)As 
were carried out with a 6.994-eV laser. The same laser SARPES system was used for 
the high-resolution measurements on Fe(Te,Se). The photon-dependent SARPES 
measurements on Fe(Te,Se) were carried out at BL9B and HiSOR. The resolution is 
set to ~6 meV for the laser SARPES, and ~30 meV for the SARPES at HiSOR.

The measurements on Fe(Te,Se) of the in-plane magnetoresistance ρ(H) in 
static magnetic fields up to 14 T were carried out with a commercial Physical 
Property Measurement System (PPMS). The measurements in pulsed high 
magnetic fields up to 30 T were performed with a four-probe point contact method. 
The experimental data taken with pulsed magnetic fields were recorded on a 16-bit 
digitizer and analysed using a numerical lock-in technique.

The density functional theory (DFT) calculations employed the projector 
augmented wave method encoded in the Vienna ab initio simulation package53–55, 
and the local density approximation for the exchange correlation functional 
was used56. Throughout this work, a cutoff energy of 500 eV was taken when 
expanding the wavefunctions into the plane-wave basis. In the calculation, the 
Brillouin zone was sampled in k space within the Monkhorst–Pack scheme57. The 
number of k points chosen depends on the material: 11 ×  11 ×  5 and 9 ×  9 ×  9 for 
LaOFeAs, LiFeAs, Fe(Te,Se) conventional cells and the BaFe2As2 primitive cell, 
respectively. The spin–orbit coupling was included in self-consistent calculations 
of the electronic structure. The surface spectrum was computed by the surface 

Green’s function method. We note that the dynamical mean-field theory (DMFT) 
calculations on Fe(Te,Se) show similar band inversion to the DFT calculations5. 
The band inversion in the calculations is unlikely to vanish when taking correlation 
effects into consideration.

The effective Hamiltonian for the theoretical calculations on Fe(Te,Se) was 
built on the eight bands (pz, dxy, dyz/dxz) at the Γ  point. First, we derived the four-
band model without spin–orbit coupling. The first-principles calculations indicate 
the four characteristic bands are labelled as the irreducible representations Γ−

2 , Γ+
5  

and Γ+
4  of the point-group D4h at Γ  without spin–orbit coupling. The 4-band time-

reversal-invariant k · p model was established under the basis of those irreducible 
representations. Then, the spin-orbit coupling was taken into consideration, by 
doubling the basis with the spin degree of freedom and introducing additional 
terms. The (001) surface spectrum was computed by the surface Green’s function 
method. More details can be found in Supplementary Information Part 5.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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